Molecular Genetics

Plant molecular genetics research at Washington State University focuses on the fundamental knowledge of how genes and genomes contribute to plant development and responses to the environment. Some of the molecular genetic techniques employed at Washington State University include genome sequencing, gene expression analysis, gene amplification and cloning, reverse genetics through mutagenesis and mutant screens as well as forward genetics using genome editing and transgenic plants. Molecular geneticists in the Department of Crop and Soil Sciences study how plants work and, when applicable, translate this knowledge into crop improvement. The molecular genetics program is crosscutting and interacts with other research areas including breeding, genomics, turf, weed science and microbiology. Molecular genetic research is conducted in laboratories, greenhouses, growth chambers, and Washington State University research farms as well as growers fields.

 

weidongchen

Weidong Chen, USDA-ARS

w-chen@wsu.edu

My research program focuses on diseases of pulse crops including pea, chickpea and lentil. I carry out applied and fundamental research on fungal diseases, ranging from disease diagnoses, epidemiology, disease management to genetics of plant-pathogen interactions to unravel mechanisms of pathogen virulence and host resistance. Current research efforts are on managing metalaxyl-resistant Pythium populations, and interactions of fungal (Ascochyta and Sclerotinia) effectors with host receptors in modulating disease development.


coyne-headshot-2016

Clare Coyne, USDA-ARS

clarice.coyne@ars.usda.gov

My research program focuses on the utilization of cool season food legume germplasm (pea, lentil, chickpea, and faba bean) in crop improvement. Current collaborative projects include building genomic resources for pea and lentil (reference genomes and resequencing germplasm), quantitative resistance to root rots in pea and lentil, winter-hardiness and seed quality in pea and chickpea.


Gill

Kulvinder Gill

ksgill@wsu.edu

Kulvinder Gill’s research program mainly focuses on three projects: 1. Understanding chromosome pairing control in polyploids and its utility in crop improvement; 2. Improving heat tolerance in wheat; and 3. accomplishing quick, efficient, precise and targeted transfer of agronomically important genes across cultivars and species by developing and using fast breeding methods. Co-funded by USAID and government of India, he is leading a $16.3 million project to develop heat-tolerant wheat for SE Asia. The project has 47 scientists from 12 Indian research institutes and two private companies.


TedKisha

Ted Kisha, USDA-ARS

tkisha@wsu.edu

Ted Kisha is the curator of Phaseolus Species of the National Plant Germplasm System of the USDA-ARS. In addition to the acquisition, maintenance, and regeneration of Phaseolus germplasm, his research on characterization includes genetic diversity assesment and nutritional quality of beans.


Michael Neff

mmneff@wsu.edu

Neff lab research focuses on understanding how seeds and seedlings respond to their external light environment and how these pathways interact with plant hormones such as brassinosteroids and auxins. The Neff lab uses a variety of plants for this research including the model systems Arabidopsis thaliana and Brachypodium distachyon. We use fundamental molecular genetics to understand how these pathways regulate plant growth and development. The Neff lab also uses molecular genetics and genomics to translate this knowledge to cereal crops such as wheat, and oilseed crops such as camelina and canola. The Neff lab also has a breeding program focusing on various turf grasses and the orphan crop teff.


Karen Sanguinet

karen.sanguinet@wsu.edu

My research program focuses on the molecular genetic and genomic cues that govern root development in grasses. We use B. distachyon as a model as well as wheat to study how roots grow in their native and diverse soil environments. In addition, we study how the plant cell well and hormones mediate morphogenesis in the root.


camille-steber2016

Camille Steber, USDA-ARS

csteber@wsu.edu

Camille Steber’s research examines the hormonal control of seed dormancy, germination, and plant responses to environmental stress. The goal of her wheat research program is to provide the breeding tools needed to reduce the risk of low Hagberg-Perten falling numbers, an indicator of starch degradation in wheat flour. Low falling numbers can result both from preharvest sprouting in the rain and induction of late maturity alpha-amylase (LMA) by temperature fluctuations during grain maturation. Her fundamental research program uses molecular genetic approaches to understand how the plant hormones GA and ABA control seed dormancy, germination, and the expression of the alpha-amylase enzyme that causes low falling numbers in wheat.


Zhiwu Zhang

zhiwu.zhang@wsu.edu

Dr. Zhiwu Zhang is an Assistant Professor in Department of Crop and Soil Sciences with Endowment of Distinguished Professorship for Quantitative Genetics. His research is to develop innovative, cutting-edge statistical methods and computing tools to advance genomic research toward the sustainability of food production and healthcare management. Dr. Zhang teaches a graduate level course, Statistical Genomics (Crop_Sci545), mainly covering gene mapping through Genome Wide Association Studies and molecular breeding through genomic prediction.