Tarah S. Sullivan

Tarah Sullivan.

Assistant Professor/Scientist

Soil Microbiology, Microbial Ecology and
Metal Biogeochemistry

Office: 231 Johnson Hall
Lab: 228 Johnson Hall
Department of Crop and Soil Sciences
PO Box 646420
Washington State University
Pullman, WA 99164-6420

Twitter- @TSullivanLab



Ph.D., Cornell University, Soil Science, Sub-disciplines: Microbiology, Toxicology, 2010
M.S., Colorado State University, M.S., Soil Science, Emphasis: Microbiology, 2004
B.S., Colorado State University, Restoration Ecology/Rangeland Ecosystem Science, 2002

Research Interests

My research emphasis is on linking the function and phylogeny of the soil microbiome, specifically with regard to the interactions and impacts on metal bioavailability. Whether the context is micronutrient availability in the rhizosphere, which confers plant growth promotion and crop enhancement, or in the context of contaminated systems where bioremediation and bioaugmentation are the best options to remediate heavy metals polluted sites, the soil microbiome is key in theses biotransformations. Understanding the consortia of organisms and the mechanisms involved drives the work in my lab with a wide array of biochemical and molecular techniques.

Research Associates

Rick Lewis, Post-doctoral research associate
Kalyani Muhunthan, Research associate

Recent Publications

Lewis, R., M.K. LeTourneau, J. Davenport, and T.S. Sullivan*. 2018. ‘Concord’ grapevine nutritional status and chlorosis rank associated with fungal and bacterial root zone microbiomes. Plant Physiology and Biochemistry (doi: 10.1016/j.plaphy.2018.06.011).

Barth, V.P., C.R. Reardon, T. Coffey, A.M. Klein, C.L. McFarland, D.R. Huggins, and T.S. Sullivan*. 2018. Stratification of soil chemical and microbial properties under no-till management after lime amendment. Applied Soil Ecology (doi: 10.1016/j.apsoil.2018.06.001).

Hansen, J.C., W.F. Schillinger, T.S. Sullivan, and T.C. Paulitz, 2018. Rhizosphere microbial communities of canola and wheat at six paired field sites in eastern Washington. Applied Soil Ecology (doi: 10.1016/j.apsoil.2018.06.012).

Lewis, R.W., V.P. Barth, T. Coffey, C.R. McFarland, C.R., D. Huggins, and T.S. Sullivan*. 2018. Altered bacterial communities in long-term no-till soils associated with stratification of soluble Aluminum and soil pH. Soils, Special Issue: Soil Processes Controlling Contaminant Dynamics, 2(1), 7; doi: 10.3390/soils2010007.

Allen, B., M. Drake, N. Harris, and T.S. Sullivan*. 2017. Using KBase to assemble and annotate prokaryotic genomes. Current Protocols in Microbiology, 46, 1E.13.1–1E.13.18. doi: 10.1002/cpmc.37.

Paul, N.C., T.S. Sullivan, T.S., and D.H. Shah. 2017. Differences in antimicrobial activity of chlorine against twelve most prevalent poultry-associated Salmonella serotypes. Food Microbiology, 64: 202-209.

Tautges, N.E., T.S. Sullivan, C.L. Reardon, and I.C. Burke. 2016. Soil Microbial Diversity and Activity Linked to Crop Yield and Quality in Dryland Organic Wheat Production System. Applied Soil Ecology 108:258-268.

Sullivan, T.S., J.E. Thies, and M.B. McBride. 2013. Rhizosphere microbial community and Zn uptake by willow (Salix purpurea L.) depend on soil sulfur concentrations in metalliferous peat soils.  Applied Soil Ecology, 67:53-60.

Sullivan, T.S., M.B. McBride, and J.E. Thies. 2013. Field-scale heterogeneity of S, Zn, Cd, and Cu impacts phytoavailability and microbial community in a metalliferous peat soil.  In press Soil Biology & Biochemistry.

Duchicela, J., T.S. Sullivan, E. Bontti, and J.D. Bever. (Published Online 19  July 2013). Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano.  Journal of Applied Ecology, DOI: 10.1111/1365-2664.12130

Sullivant, T.S., N.R. Gottel, N. Basta, P.M. Jardine, and C.W. Schadt. 2012. Firing range soils yield a diverse array of fungal isolates capable of Pb-mineral solubilization. Applied and Environmental Microbiology, 78(17):6078-6086.

*Note: We were granted the cover image for AEM Volume 78, Number 24.

Sullivan, T.S., S. Ramkissoon, V.H. Garrison, A. Rhamsubhag, and J.E. Thies. 2012. Siderophore production of African dust microorganisms over Trinidad & Tobago. Aerobiologia, 28(3):391-401.

News Articles

Soil Microbiology & Agricultural Sustainability Podcast


Ask Dr. Universe: Why Do Worms Come Out When It Rains?

That’s a great observation. When it rains, worms sometimes leave their home in the soil and wiggle their way up to the surface where we see them on sidewalks and roads.

Worms come to the surface to move around, but exactly why they do it or where they are headed remains a bit of a mystery. Still, scientists have some interesting theories about it.

That’s what I found out from my friend Tarah Sullivan, a scientist at WSU who studies the living soil. Soil is very much alive, she reminds me.


The Microbe Whisperers

Tarah Sullivan is fiercely insistent that we all interconnected. The Washington State University soil microbiologist and ecologist says that understanding those connections is key to a healthy future.

“I know it sounds a little hokey,” the mother of two daughters apologizes without backing down: “Microorganisms connect everything everyday in every way. We absolutely could not survive on the planet without active and healthy microbiomes, in humans and in the environment.”


Soil Acidity Impacts Beneficial Soil Microorganisms

Soils harbor more diverse microbial populations than any other habitat on earth. Only a very small fraction of those organisms are responsible for any type of plant or animal disease. In fact, the vast majority of these microscopic soil organisms are highly beneficial in terms of nutrient cycling, soil tilth, and soil health. Because of their important roles in these crucial soil properties and their direct interactions with plants, beneficial soil microorganisms are also absolutely critical to soil fertility and plant nutrition. Unfortunately, the rapid acidification of soils in the inland Pacific Northwest is having detrimental impacts on the populations and effectiveness of beneficial soil microorganisms.


Symposium Addresses the Science of the Rhizosphere

According to Tarah Sullivan, Washington State University, “the specific metabolic activities and signaling that takes place within the microbiome and between the microbes and their host plants is a rapidly growing focus area of scientific understanding.” Her research seeks to bridge the gap in knowledge about the functional role of microorganisms associated with the roots of plant species, with specific focus on metal chelating abilities of members of the plant and soil microbiome.


Can Good Fungi Restore Bad Soil?

Tarah Sullivan is fascinated by fungi, especially the ones in agricultural soils that offer hope for addressing toxicity issues by transforming harmful metals.