Kulvinder Gill

Kulvinder Gill

Professor

277 Johnson Hall
PO Box 646420
Pullman WA 99164-6420 USA
Phone 509-335-4666
FAX 509-335-8674
ksgill@wsu.edu

 

Gill Lab website

USAID website

Curriculum Vitae (pdf)

Education

Ph.D. (Genetics) 1990, Kansas State University, Manhattan, KS
M.S. (Plant Breeding) 1983, Punjab Agricultural University, India
B. Sc. [Honors] (Agronomy) 1981, Punjab Agricultural University

Research

Understanding the molecular basis of chromosome pairing control in polyploids, genome organization of grass species including localizing and demarcating gene-containing regions, molecular characterization of agronomically important genes, developing fast breeding approaches, developing alternate dwarfing gene systems for wheat, understanding and improving heat tolerance in cereals, and developing fast and efficient gene cloning strategies for wheat. The applied aspect of the project deals with quick, efficient, precise and targeted transfer of agronomically important genes across cultivars and species using marker assisted background selection method. Learn more about Dr. Gill’s reasearch here.

Publications

Rustgi, S., M.N. Shafqat, N. Kumar, P.S. Baenziger, M.L. Ali, I. Dweikat, B.T. Campbell, and K.S. Gill. 2013. Genetic Dissection of Yield and Its Component Traits Using High-Density Composite Map of Wheat Chromosome 3A: Bridging Gaps between QTLs and Underlying Genes. PLOS ONE 8 (7): e70526 (1 citation)

Dhariwal, R., G. Kaur, J.S. Saini, K.S. Gill, H.S. Balyan, and P.K. Gupta. 2012. Identification of an alternate wheat dwarfing gene: wheat homologues of Arabidopsis Dwarf4 gene. Crop Improvement 39:13.

Kaur, G., R. Dhariwal, K. Singh, S. Jindal, J.S. Saini, M.M. Jindal, and K.S. Gill. 2012. Exploring the role of auxin influx carrier gene AUX1 for development of an improved dwarfing system in wheat. Crop Improvement 39:215.

Singh, K., S. Jindal, R. Dhariwal, G. Kaur, J. Singh, and K.S. Gill. 2012. In silico prediction and analysis of TaPIN1 (Auxin efflux carrier) gene in wheat. Crop Improvement 39:419.

Jindal, S., K. Singh, G. Kaur, R. Dhariwal, K.S. Gill, and K. Singh. 2012. In silico prediction and analysis of maximum auxiliary branching (max2) gene in Triticum aestivum using comparative genomics. Crop Improvement 39:409.

Dewan, D., N. Kaur, K.S. Gill, and G.S. Randhawa. 2012. Role of rootless concerning crown and seminal roots (RTCS) gene in wheat: Bioinformatics and molecular approach. Crop Improvement 39:111.

Kaur, N., D. Dewan, K.S. Gill, and G.S. Randhawa. 2012. Study role of NRT2 gene in nutrient use efficiency in Wheat through virus induced gene silencing. Crop Improvement 39:249.

Mengistu, N., P.S. Baenziger, K.M. Eskridge, I. Dweikat, S.N. Wegulo, K.S. Gill, and A. Mujeeb-Kazi. 2012. Validation of QTL for grain yield-related traits on wheat chromosome 3A using recombinant inbred chromosome lines. Crop Science 52(4):1622-1632.

Bennypaul, H.S., J.S. Mutti, S. Rustgi, N. Kumar, P.A. Okubara, and K.S. Gill. 2012. Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Functional and Integrative Genomics:12(1):143-156.

Brar, D.S., I.C. Burke, J.P. Yenish, J. Bell, and K. Gill. 2011. Inheritance and Physiological Basis for 2,4-D Resistance in Prickly Lettuce (Lactuca serriola L.). J Agric Food Chem 59 (17):9417-9423.

Baenziger, P.S., I. Dweikat, K.S. Gill, K. Eskridge, T. Burke, M. Shah, B.T. Campbell, M.L. Ali, N. Mengistu, A. Mahmood, A. Auvuchanon, Y. Yen, S. Rustgi, B. Moreno-Sevilla, A. Mujeeb-Kazi, and M.R. Morris. 2011. Understanding Grain Yield: It Is a Journey, Not a Destination. Czech J. Genet. Plant Breed. 47:S77–S84.

Mutti, N.S., A.G. Dolezal, F. Wolschin, J.S. Mutti, K.S. Gill, and G.V. Amdam. 2011. IIS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. The Journal of Experimental Biology 214:3977-3984 doi:10.1242/jeb.061499.

Lee, H., S. Rustgi, N. Kumar, I. Burke, J.P. Yenish, K.S. Gill, D. von Wettsteina, and S.E. Ullrich. 2011. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA vol. 108 no. 21 8909-8913 doi: 10.1073/pnas.110561210.

Mutti, J.S., P.S. Baenziger, R.A. Graybosch, R. French, and K.S. Gill. 2011. Registration of seven winter wheat germplasm lines carrying Wsm1 gene for wheat streak mosaic virus resistance. Journal of Plant Registrations: 5 (3):414-417.

Bennypaul, H.S., J.S. Mutti, S. Rustgi, N. Kumar, P.A. Okubara, and K.S. Gill. 2011. Use of barley stripe mosaic virus (BSMV) for virus-induced gene silencing (VIGS) and gene expression in various wheat tissues. Functional and Integrated Genomics (Epub ahead of print). DOI: 10.1007/s10142-011-0245-0.

Ali, M.L., P.S. Baenziger, Z.A. Ajlouni, B.T. Campbell, K.S. Gill, K.M. Eskridge, A. Mujeeb-Kazi, and I. Dweikat. 2011. Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Science 51:553-566.

Riar, D.S., S. Rustgi, I.C. Burke, K.S. Gill, and J.P. Yenish. 2011. EST-SSR development from five Lactuca species and their use in studying genetic diversity among L. serriola biotypes. J. Heridity 102(1):17-28.

Mi, X., K. Eskridge, D. Wang, P.S. Baenziger, B.T. Campbell, K.S. Gill, and I. Dweikat. 2010. Bayesian mixture structural equation modeling in multiple-trait QTL mapping. Genetics Research 92:239-250, doi:10.1017/S0016672310000236

Mi, X., K. Eskridge, D. Wang, P.S. Baenziger, B.T. Campbell, K.S. Gill, I.M. Dweikat, and J.A. Bovaird. 2010. Regression-Based Multi-Trait QTL Mapping Using a Structural Equation Model. Statistical Applications in Genetics and Molecular Biology 9(1):22 pages, DOI:10.2202/1544-6115.1552.

Mutti, J.S., D. Sandhu, D. Sidhu, and K.S. Gill. 2010. Dynamic nature of a wheat centromere with a functional gene. Molecular Breeding 26 (2):177-187. 10.1007/s11032-009-9389-1.

More publications (pdf)

Related Pages

Bread Project

News Articles

WSU leads development of heat-tolerant grain

Kulvinder Gill
Kulvinder Gill leads effort to develop wheat varieties that are tolerant to high temperatures

PULLMAN, Wash. – Washington State University will lead a $16.2 million effort to develop wheat varieties that are better at tolerating the high temperatures found in most of the world’s growing regions – temperatures that are likely to increase with global warming.

The research will be supported by the U.S. Agency for International Development (USAID), the Indian Council of Agricultural Research (ICAR) and the Directorate of Wheat Research (DWR). The work is part of the U.S. government’s global hunger and food security initiative, Feed the Future.

Researchers aim to have their first set of “climate-resilient” varieties in five years.

The research will focus on the North Indian River Plain, which is home to nearly 1 billion people and faces challenges such as limited water and rising temperatures, said Kulvinder Gill.