Dual-Purpose Biennial Canola (*Brassica Napus* L.): Forage, Silage, and Grain Production in the Pacific Northwest

E.V. Walker, D.A. Llwellyn, and S.C. Fransen

Studies were conducted to investigate the production and quality of winter canola forage, silage, and grain. Winter canola was planted in mid-August of 2014 and 2015. Plots received one of eight nitrogen and sulfur fertilizer combinations with or without Agrotain®, a urease inhibitor. Plots were split in half with a dual-purpose treatment (DPWC) and a grain-only treatment (GOWC). Canola was harvested for forage approximately 60 days after sowing. Canola forage was ensiled with and without alfalfa cubes. Grain harvest took place July 7, 2015 and June 16, 2016. Forage yields averaged 2.1 Mg DM ha⁻¹ and forage DM was low, ranging from 90 – 130 g kg⁻¹ in 2014 and 150 – 210 g kg⁻¹ in 2015. Crude protein levels were higher in 2014 than in 2015. Ensiling canola reduced CP, but when ensiled with alfalfa cubes CP was maintained or increased. On average, the inclusion of alfalfa cubes increased NDF from fresh canola, while the NDF of canola silage without alfalfa remained about the same. Canola forage and silage was also high in ash, and highly digestible. Forage nitrate levels were low (<1.09 g NO₃ kg⁻¹). Forage sulfur levels ranged from 3.75 – 6.24 g S kg⁻¹ and increased as fertilization increased. In general, ensiling reduced forage sulfur levels. Canola silage had a pH of 4.3 and a lactic acid concentration of 120 g kg⁻¹ DM. When canola was ensiled with alfalfa silage pH was 4.6, and lactic acid was 60 g kg⁻¹ DM. Large volumes of effluent were produced when canola was ensiled, but the addition of alfalfa cubes significantly reduced effluent. Cropping treatment did not influence winter survivability. Grain yields did not differ between fertilizer treatments, but GOWC grain yield was reduced in 2015 from 2014. Dual-purpose canola yielded around 300 g kg⁻¹ less than GOWC in 2014 but was not statistically different, in 2015 DPWC and GOWC yielded similarly. Net incomes were negative for both DPWC and GOWC in both years, however losses were larger for GOWC. Dual-purpose canola produced a high-quality forage and silage with any grain yield losses offset by the value of canola forage.

Figure 1. Loading (left) and packing (right) freshly harvested canola forage into ensiling tubes.